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Background
Diffusion Models allows users to generate photorealistic image with ease.
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1. Robin Rombach et al. High-resolution image synthesis with latent diffusion models. CVPR 2022.
2. Lvmin Zhang et al. Adding conditional control to text-to-image diffusion models. ICCV 2023



Background
Diffusion Models also allow easily converting image to noisy latent for image 
translations or editing.
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1. Chen-Lin Meng et al. SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations. ICLR 2022.
2. Gaurav Parmar et al. Zero-shot image-to-image translation. ACM SIGGRAPH 2023.
3. Wen-Liang Zhao et al. Diffswap: High-fidelity and controllable face swapping via 3d-aware masked diffusion. CVPR 2023



Motivation of Attacking as Protection
How to protect our image against diffusion-based editing?
We can approach this goal as an adversarial attack to the diffusion models 
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Previous Works
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Attacking diffusion process as a whole with back-propagation 
requires substantial memory usage.

PhotoGurad [ICML 2023] Diff-Protect [ICLR 2024]

The attack effectiveness is mainly attributed to the vulnerability 
of the VAE encoders in LDM. 
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1. Hadi Salman et al. Raising the cost of malicious AI-powered image editing. ICML 2023.
2. Haotian Hue et al. Toward effective protection against diffusion-based mimicry through score distillation.. ICLR 2024



Previous Works

51. Haotian Xue, Yongxin Chen. Pixel is a Barrier: Diffusion Models Are More Adversarially Robust Than We Think. NeurIPS 2024:SafeGenAI.

Question: Can we design an effective attack on the diffusion process that applies universally to both Pixel-
based Diffusion Models (PDMs) and LDMs without relying on the vulnerability of the VAE encoder (specific 
to LDMs) or requiring the computational cost of back-propagating through every diffusion step?
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Problem Formulation and Methodology
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Proposed Method
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Feature Attack Visualization
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Qualitative Results
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Quantitative Comparisons
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Quantitative Results on Defense Method 
and Attack Transferability
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Ablation Study
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Takeaway
• Although the denoising processes of PDM and LDM seems robust, there still 

exists vulnerabilities in the feature space inherent in the diffusion models.

• Our study shows the denoising process of the PDMs are robust to pixel-level 
adversarial perturbation but susceptible to perceptual-level adversarial 
perturbation.

• We can perform optimization over the latent space of a victim-model-agnostic 
Variational Autoencoder (VAE) to craft an effective perceptual-level 
adversarial perturbation against PDM while maintaining the image fidelity.
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