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§ Background

Diffusion Models allows users to generate photorealistic image with ease.
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1. Robin Rombach et al. High-resolution image synthesis with latent diffusion models. CVPR 2022.

2. Lvmin Zhang et al. Adding conditional control to text-to-image diffusion models. ICCV 2023



§ Background

Diffusion Models also allow easily converting image to noisy latent for image
translations or editing.
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1. Chen-Lin Meng et al. SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations. ICLR 2022.
2. Gaurav Parmar et al. Zero-shot image-to-image translation. ACM SIGGRAPH 2023.
3. Wen-Liang Zhao et al. Diffswap: High-fidelity and controllable face swapping via 3d-aware masked diffusion. CVPR 2023



] Motivation of Attacking as Protection

How to protect our image against diffusion-based editing?
We can approach this goal as an adversarial attack to the diffusion models
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J Previous Works
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(c) Tool One ( : Score Distillation Speedup

i

Attacking diffusion process as a whole with back-propagation The attack effectiveness is mainly attributed to the vulnerability
requires substantial memory usage. of the VAE encoders in LDM.
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1. Hadi Salman et al. Raising the cost of malicious Al-powered image editing. ICML 2023. 4
2. Haotian Hue et al. Toward effective protection against diffusion-based mimicry through score distillation.. ICLR 2024
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J Previous Works

(a) Adv-samples for PDMs are largely overlooked
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(b) Protections can be easily bypassed using PDM
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(c) Pixel is a Barrier
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Question: Can we design an effective attack on the diffusion process that applies universally to both Pixel-
based Diffusion Models (PDMs) and LDMs without relying on the vulnerability of the VAE encoder (specific
to LDMSs) or requiring the computational cost of back-propagating through every diffusion step?

Haotian Xue, Yongxin Chen. Pixel is a Barrier: Diffusion Models Are More Adversarially Robust Than We Think. NeurlPS 2024:SafeGenAl.



§ Problem Formulation and Methodology
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] Proposed Method
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J Feature Attack Visualization
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] Qualitative Results
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] Quantitative Comparisons

Methods

Adversarial Image Quality

Attacking Effectiveness

SSIM 1 PSNR 1 LPIPS | SSIM | PSNR | LPIPS+  IA-Score |

.~ AdvDM (Liang etal. 2023) | 037 +£0.09 28174022 0.73+0.16 | 0.89£0.05 31.06+1.94 0.17£0.09 0.93 + 0.04
2 Diff-Protect (Xue etal. 2023) | 0.39 £ 0.07 _28.03+£0.12 _0.67+£0.11 | 0.82+0.05 31.90+1.08 0234007 _0.91 4+ 0.04
& | AkPDM (Ours) 0.75+0.03 2822+0.10 0264004 | 0.75+0.04 29.61+023 0.40+005 0.76 +0.06
AtkPDM™* (Ours) 0.81 +0.03 28.64+0.19 0.13+0.02 | 0.79+0.04 30.05+0.47 033 +0.07 0.81 +0.06
AdvDM (Liang et al. 2023) | 048 +0.09 2834 +0.18 0.65+0.12 | 0.96 +£0.02 32.32+249 0.10+£0.05 0.97 +0.03

= Diff-Protect (Xue et al. 2023) | 0.334+0.10 28.034+0.15 0.80+0.15 | 0.90 + 0.05 33.94+1.93 0.18 +0.08 0.95 4 0.03
O | AtkPDM (Ours) 0.71 +£0.06 2847 +0.18 0.29+0.05 | 0.83+0.03 30.73+0.51 0.39+0.05 0.81 + 0.04
AtkPDM™* (Ours) 0.83+0.04 29414037 0.09+002 | 093+001 33024074 0.18+0.02 0.92 +0.01
AdvDM (Liang et al. 2023) | 048 £0.05 28.75+0.18 0.64+0.10 | 0.99 £0.00 37.96+1.75 0.02+0.01 0.99 + 0.00

8 Diff-Protect (Xue etal. 2023) | 0.25+0.04 28.09+0.20 0.91+0.11 | 0954002 3533+ 162 0.08+0.04 0.96  0.02
& | AtkPDM (Ours) 0.56 + 0.04 2801 +022 036+004 | 074 £0.03 29.14+036 0.40=+005 0.62+0.07
AtkPDM™ (Ours) 0.81 - 0.04 28394+020 0.124+0.03 | 0.86+0.03 3026+ 0.72 0.24 +0.07 0.80 + 0.08

Table 1: Quantitative results in attacking different unconditional PDMs. The best is marked in bold and the second best is
underlined. Errors denote one standard deviation of all images in our test datasets.

Adversarial Image Quality

Attacking Effectiveness

MEEnodS | SSIM 1 PSNR 1 LPIPS | ’ SSIM | PSNR | LPIPSt+  IA-Score |
Diff-Protect (Xue et al. 2023) | 0.47 +0.08 27.96 +0.08 0.46+0.05 | 0.49 £0.10 28.13+£0.15 036+0.10 0.79 + 0.06
AtkPDM™ (Ours) 0.79 + 0.06 28.48 033 0.06+0.02 | 0.72+£0.10 28.50+048 0.10+0.04 0.86 % 0.08

Table 2: Quantitative results in attacking conditional PDM DeepFloyd IF. The best is marked in bold and the second best is
underlined. Errors denote one standard deviation of all images in our test datasets.
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] Quantitative Results on Defense Method
and Attack Transferability

Attacking Effectiveness

Attacking Effectiveness

Defense Method  gornvi | pSNR | LPIPSt  IA-Score |
LDM-Pure 0.78 29.84 0.35 0.80
Crop-and-Resize 0.68 29.28 0.42 0.79
JPEG Comp. 0.78 29.82 0.36 0.79
None 0.79 30.05 0.33 0.81

Setting SSIM| PSNR] LPIPS+ IA-Score |
White Box 079  30.05 0.33 0.81
Black Box  0.86  30.25 0.29 0.85
Difference 0.07 0.20 0.04 0.04

Table 3: Quantitative results of our adversarial images
against defense methods. LDM-Pure, Crop-and-Resize, and
JPEG Compression fail to defend our attack. “None” indi-
cates no defense is applied, as the baseline for comparison.

Table 4: Quantitative results of black box attack. We use the
same set of adversarial images and feed to white box and
black box models to examine the black box transferability.



J Ablation Study

Adversarial Image x4
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Figure 7: Qualitative example of different loss configurations. i. only semantic loss; ii.

iii. semantic loss, Lggeliy and latent optimization.
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semantic loss and latent optimization;

AtkPDM* (Ours)

Adversarial Image Quality

Attacking Effectiveness

Logse VAE | so1m ¢ PSNR 1 LPIPS | SSIM | PSNR | LPIPS 1+  IA-Score |
Lo 037 +0.09 28.174+022 073+0.16 | 0.89 £0.05 31.06+1.94 0.17+0.09 0.93 & 0.04
/A v | 080+£005 29.784+042 0.174+0.03 | 0.824+0.05 3043+£0.75 0.15+£0.06 0.92+0.04
Lsemantic + Leidelity v |082+£005 3030+081 0.13+£003 | 090+003 31.24+1.19 0.08=+0.03 0.96+0.02
Lavack + Lsidgelity (AtkPDM) 0.75+0.03 2822+0.10 026+004 | 0.75+0.04 29.61+023 0.40+0.05 0.76 + 0.06
Latack + Loigety (AKPDMT) v | 0.81 +£0.03 28.64 +0.19 0.13+0.02 | 0.79 +0.04 30.05+ 047 0.33+0.07 0.81 +0.06
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] Takeaway

Although the denoising processes of PDM and LDM seems robust, there still
exists vulnerabilities in the feature space inherent in the diffusion models.

Our study shows the denoising process of the PDMs are robust to pixel-level
adversarial perturbation but susceptible to perceptual-level adversarial
perturbation.

We can perform optimization over the latent space of a victim-model-agnostic
Variational Autoencoder (VAE) to craft an effective perceptual-level
adversarial perturbation against PDM while maintaining the image fidelity.



Thanks for listening!
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